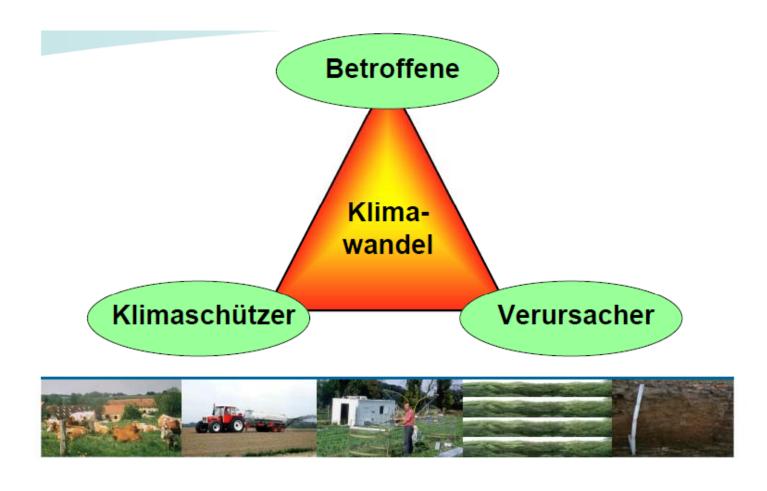


EXCELLENCE FOR SUSTAINABILITY

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau

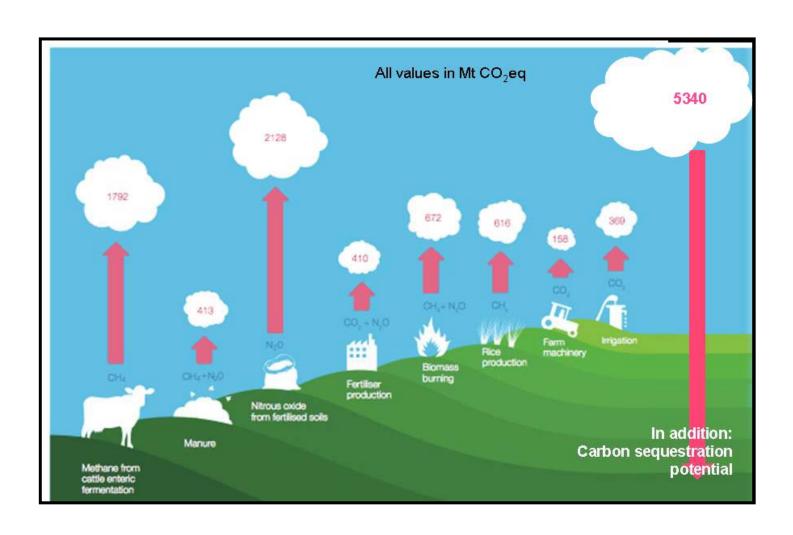
Ökologischer Landbau und Klimaschutz

Andreas Gattinger

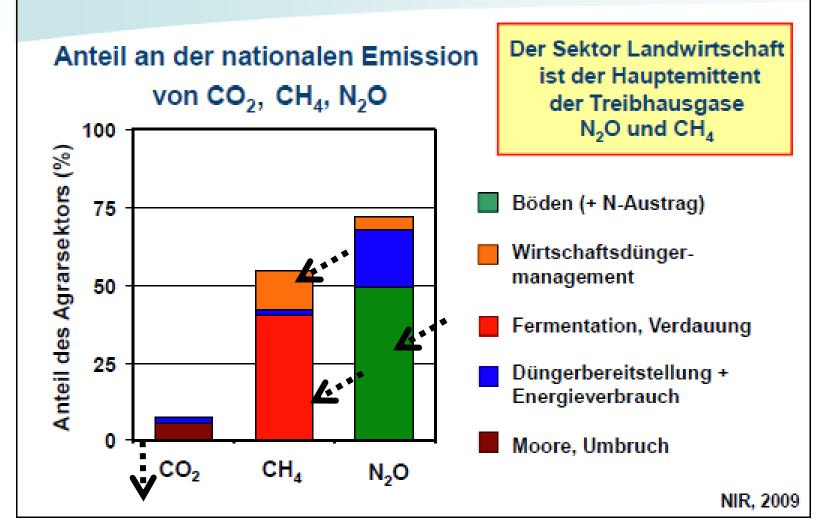

andreas.gattinger@fibl.org

Inhalte

> Einleitung

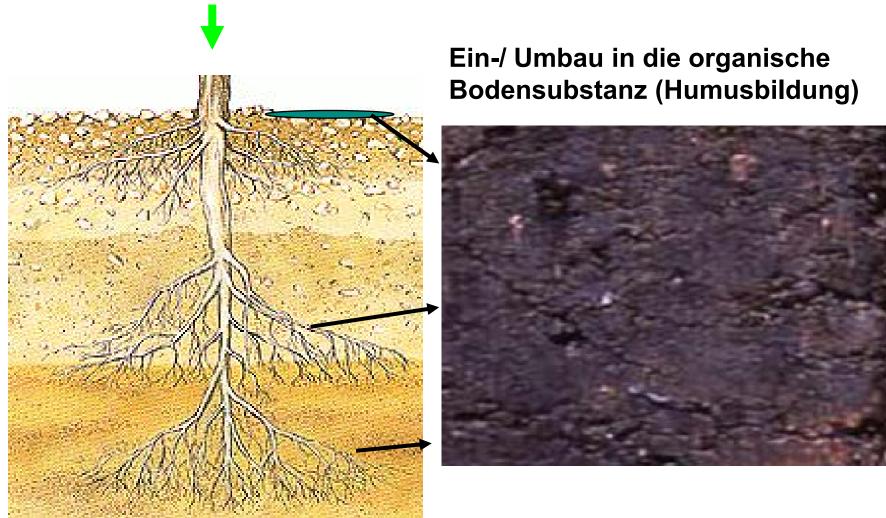

- Kohlenstoffspeicherung unter ökologischer Bodenbewirtschaftung
- Treibhausgasemissionen bei ökologischer Bodenbewirtschaftung
- > Treibhausgasemissionen in der ökologischen Rinderhaltung
- Schlussfolgerungen

Bedeutung der Landwirtschaft im Kontext des Klimawandels

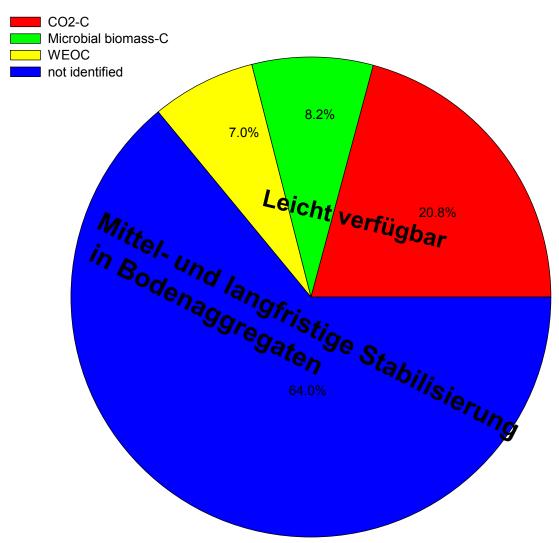


Globale Treibhausgasemissionen der Landwirtschaft und Potenzial zur Sequestrierung von Kohlenstoff im Boden

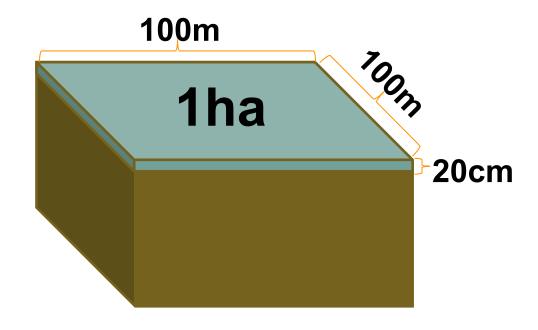
Treibhausgasemissionen aus der Landwirtschaft in Deutschland


Inhalte

- > Einleitung
- > Kohlenstoffspeicherung unter ökologischer Bodenbewirtschaftung
- Treibhausgasemissionen bei ökologischer Bodenbewirtschaftung
- > Treibhausgasemissionen in der ökologischen Rinderhaltung
- Schlussfolgerungen


Böden als Senke für CO₂

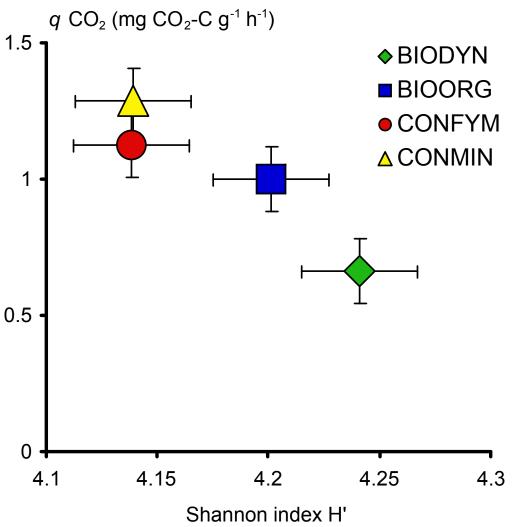
CO₂ -Einbau über Photosynthese der Pflanzen



Verbleib von Kohlenstoff aus Pflanzenwurzeln (Bsp. Exsudate von Weizenwurzeln)

Berrechnung der Bodenkohlenstoffvorräte

C-Vorrat (t/ha) = Masse (Bodenhorizont) x Kohlenstoffkonzentration


Organische Bodensubstanz und Ökolandbau

- Steigerung und Erhalt der organischen Bodensubstanz (OBS) ist Grundprinzip des Ökologischen Landbaus (ÖL)
- OBS ist essentiell für Pflanzenernährung und Bodenfruchtbarkeit in ökologischen (= low external input) Bewirtschaftungssystemen
- Vielfältige, Leguminosen basierte Fruchtfolgen und organische Düngung sind integrale Bestandteile des ÖL.
- Daher sind höhere Kohlenstoffgehalte in Böden unter ökologischer Bewirtschaftung vorzufinden?

Weniger CO₂-Emission pro g Bodenkohlstoff aus Bioböden

Mäder, P., Fließbach, A., Dubois, D., Gunst, L., Fried, P., Niggli, U. (2002): Soil fertility and biodiversity in organic farming. Science 296, 1694-1697.

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique

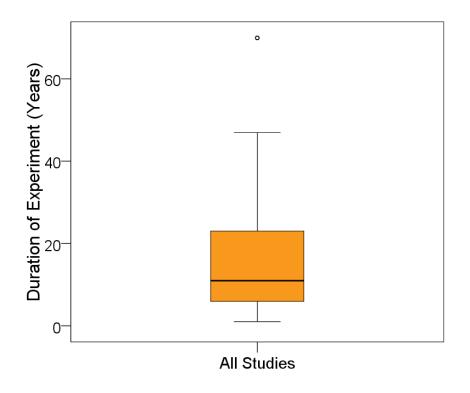
Carbon levels in agricultural soils under organic and non-organic management – a meta analysis

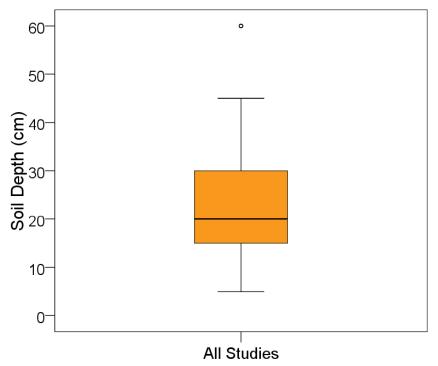
A. Gattinger, M. Häni et al. (in Vorbereitung)

Quantitative Literaturauswertung/Metaanalyse

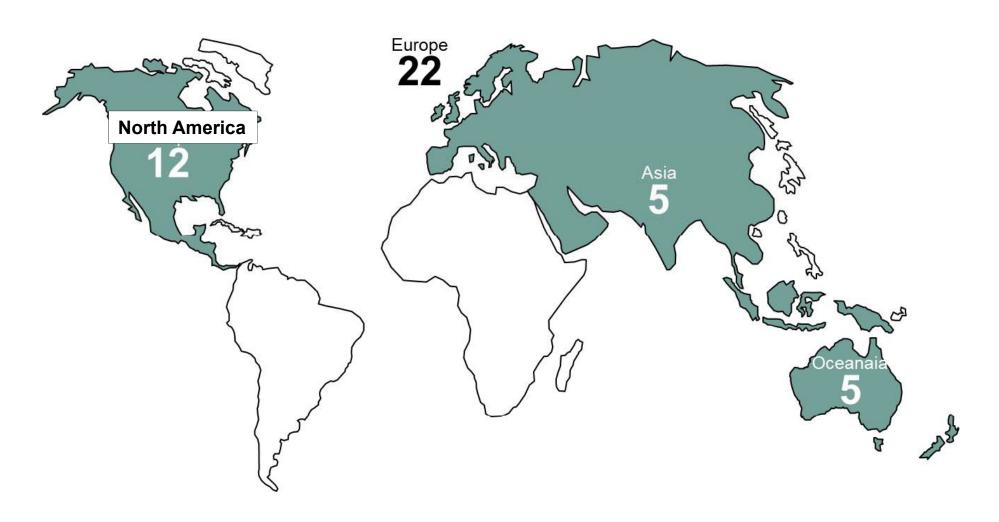
Grundvorraussetzungen

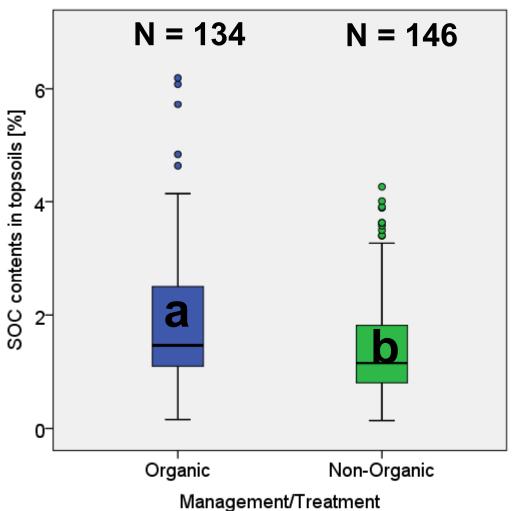
- Nur begutachtete Publikationen: a) peer-reviewed scientific journals b) conference proceedings/book chapters/dissertations
- Nur Studien basierend auf paarweisen Systemvergleichen (unter vergleichbaren Standortvoraussetzungen) für ökolog. (= organic) und konventionelle (= non-organic) Bewirtschaftung

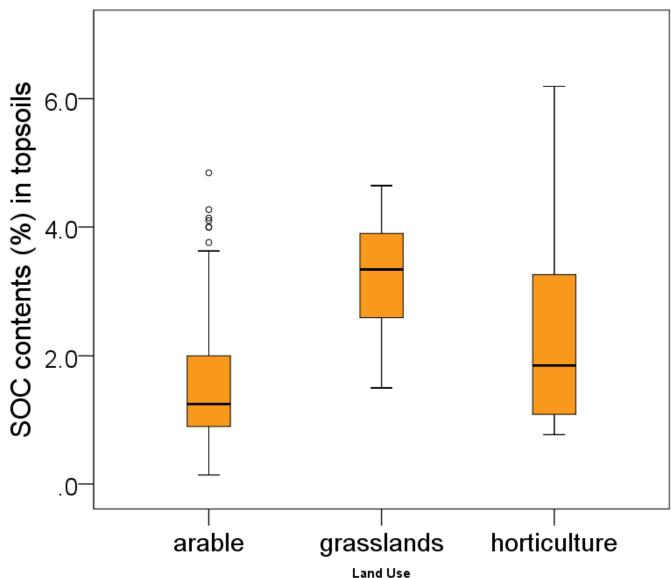



Ergebnisse I

- Anzahl geeigneter Publikationen:
 - 45 gesamt:
 - 37 peer-reviewed paper aus wissenschaftlichen Zeitschriften
 - 8 Konferenzbeiträge/Buchkapitel/Dissertationen
- Diese 45 Publikationen basieren auf 44 paarweisen Systemvergleichen:
 - 21 Langzeitparzellenversuche
 - 5 Feldvergleiche
 - 18 Betriebsvergleiche
- Zur Zeit 280 Datensätze (niedrigstes Aggregierungsniveau: allgemeine Statistik) basierend auf 2477 Stichproben (Meta-Analyse)




Weltweite Verteilung von Systemvergleichen (konv. vs. öko.) zur Abschätzung systembedingter C-Speicherung


Ergebnisse II: Kohlenstoffgehalte (= Konzentrationen)

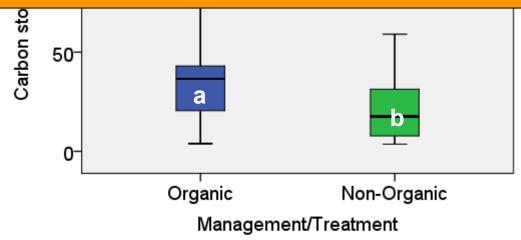
Kohlenstoffgehalte (= Konzentrationen)

Study name	Subgroup within study			Statis	stics for each	study				Std diff	in means and	95% CI	
		Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-4.00	-2.00	0.00	2.00	4.0
Canali 2005	Citrus	0.285	0.274	0.075	-0.251	0.821	1.042	0.298			+-		
Canali 2009	Citrus	0.871	0.410	0.168	0.067	1.676	2.123	0.034			+		
lark et al 1998	0-15 cm	0.495	0.299	0.090	-0.092	1.082	1.653	0.098			+	-	
lark et al 1998	15-30 cm	-0.000	0.296	0.088	-0.580	0.579	-0.001	0.999			—		
elate and Cambardella, 2004	June 1998	0.001	0.577	0.333	-1.131	1.132	0.001	0.999		-		-	
elate and Cambardella, 2004	November 1998	0.001	0.612	0.375	-1.199	1.201	0.001	0.999		-		-	
errick & Dumaresq 1999	Org-to-Con-Comparison	0.269	0.387	0.150	-0.490	1.027	0.694	0.488					
ltun et al 2002	Arable	0.001	0.707	0.500	-1.385	1.387	0.001	0.999		-		_	
ltun et al 2002	Forage	0.001	0.707	0.500	-1.385	1.387	0.001	0.999		-		_	
yhorn et al. 2007	Cotton	0.006	0.115	0.013	-0.219	0.231	0.050	0.960			+		
iessbach et al 2007	Fertilization manure level 1	0.000	0.354	0.125	-0.693	0.693	0.001	0.999					
iessbach et al 2007	Fertilization manure level 2	0.000	0.354	0.125	-0.693	0.693	0.001	0.999					
aser et al 1988	0-7.5 cm	0.001	0.612	0.375	-1.199	1.201	0.001	0.999		_		_	
aser et al 1988	15-30 cm	0.001	0.577	0.333	-1.131	1.132	0.001	0.999		_		_	
riedel et al 2000	Org-to-Con-Comparison	0.001	0.816	0.667	-1.599	1.601	0.001	0.999		l			
arcia et al 1989	Dyn-to-Con-Comparison	0.754	0.455	0.207	-0.137	1.644	1.658	0.097			<u> </u>		
epperly et al 2006	Year 1981	0.001	0.433	0.188	-0.848	0.849	0.001	0.999					
epperly et al 2006	Year 2002	0.744	0.446	0.199	-0.131	1.618	1.667	0.096					
ahle 2005	Org-to-Con-Comparison	0.701	0.421	0.177	-0.123	1.525	1.667	0.096					
rchmann et al 2007	Arable Production Conversion	0.001	0.421	0.667	-1.599	1.601	0.001	0.999					
rchmann et al 2007	Grassland Conversion	0.001	0.816	0.667	-1.599	1.601	0.001	0.999			[
rchmann et al 2007	Org-to-Con-Comparison	0.001	0.816	0.667	-1.599	1.601	0.001	0.999					
ong et al 2005	Org-to-Con-Rotation-Comparison	0.895	0.535	0.887	-0.154	1.945	1.672	0.094					
ong et al 2005 ramer et al. 2006	Apple	1.110	0.653	0.426	-0.134	2.390	1.700	0.034					
ukal 2009	Maize-Wheat 0-15 cm	0.001	0.653	0.426	-1.131	1.132	0.001	0.003					
ukal 2009 ukal 2009	Maize-Wheat 15-30 cm	1.017	0.605	0.366	-0.168	2.202	1.682	0.093					
					-0.168	2.202	1.682	0.093					
ukal 2009	Maize-Wheat 30-45 cm Maize-Wheat 45-60 cm	1.017	0.605 0.605	0.366 0.366	-0.160	2.202	1.692	0.093					
ukal 2009		1.024									T		
ukal 2009	Rice-Wheat 0-15 cm	0.001	0.577	0.333	-1.131	1.132	0.001	0.999			T I	-	
ukal 2009	Rice-Wheat 15-30 cm	0.001	0.577	0.333	-1.131	1.132	0.001	0.999				_	
ukal 2009	Rice-Wheat 30-45 cm	1.017	0.605	0.366	-0.168	2.202	1.682	0.093					
ukal 2009	Rice-Wheat 45-60 cm	1.017	0.605	0.366	-0.168	2.202	1.682	0.093			1		
ebig & Doran 1999	Giltner	0.001	1.000	1.000	-1.959	1.961	0.001	0.999					
ebig & Doran 1999	Medina	0.001	1.000	1.000	-1.959	1.961	0.001	0.999					
otton-Hitchins et al 1994	Dyn-to-Con-Comparison	1.244	0.399	0.159	0.463	2.026	3.120	0.002			-	-	
arinari et al 2005	April 2001	-0.001	0.577	0.333	-1.132	1.131	-0.001	0.999		-		-	
arinari et al 2005	November 2001	0.001	0.577	0.333	-1.131	1.132	0.001	0.999		-		-	
arinari et al 2005	September 2000	0.001	0.577	0.333	-1.131	1.132	0.001	0.999		-		-	
arriott & Wander 2006	Org-to-Con-Comparison	0.360	0.218	0.048	-0.068	0.788	1.650	0.099					
azzoncini et al 2010	Org-to-Con-Comparison	0.621	0.374	0.140	-0.112	1.354	1.662	0.097			+	_	
elero et al 2006	Broad bean June 2000	1.374	0.786	0.618	-0.167	2.915	1.748	0.080			+		
elero et al 2006	Melons/W. Melons Aug 2001	1.374	0.786	0.618	-0.167	2.915	1.748	0.080			+		
elero et al 2006	Melons/W. Melons May 2000	1.374	0.786	0.618	-0.167	2.915	1.748	0.080			+	-	
elero et al 2007	Crop rotation lentil	1.110	0.653	0.426	-0.170	2.390	1.700	0.089			+	+	
lelero et al 2007	Crop rotation wheat	0.969	0.580	0.336	-0.167	2.105	1.672	0.094			+		
ulla et al 1992	Backslope	0.353	0.212	0.045	-0.064	0.769	1.660	0.097			 		
ulla et al 1992	Footslope	0.350	0.212	0.045	-0.066	0.767	1.650	0.099			 		
Iulla et al 1992	Topslope	0.672	0.217	0.047	0.247	1.096	3.099	0.002				-	
Iberholzer et al 2000	Org-to-IP-Comparison	0.000	0.289	0.083	-0.565	0.566	0.001	0.999					

Study name	Subgroup within study		Statistics for each study						Std diff in means and 95% Cl				
		Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value	-4.00	-2.00	0.00	2.00	4.00
Petersen et al 1997	Org-to-Con-Comparison	0.001	0.500	0.250	-0.979	0.981	0.001	0.999				-	
Pimentel et al 2005	Year 1981	0.001	0.433	0.188	-0.848	0.849	0.001	0.999				-	
Pimentel et al 2005	Year 2002	0.744	0.446	0.199	-0.131	1.618	1.667	0.096			+	—	
Rasul and Tapa 2004	Comparison Pair	0.001	0.447	0.200	-0.876	0.877	0.001	0.999			\rightarrow	-	
Raupp 2001	Darmstadt	0.598	0.361	0.130	-0.109	1.304	1.658	0.097			+	—	
Raupp 2001	Darmstadt High Fert	0.001	0.707	0.500	-1.385	1.387	0.001	0.999			\longrightarrow	—	
Raupp 2001	Darmstadt Low Fert	0.001	0.707	0.500	-1.385	1.387	0.001	0.999				— I	
Raupp 2001	Darmstadt Medium Fert	0.001	0.707	0.500	-1.385	1.387	0.001	0.999			\longrightarrow	—	
Reganold 2010	0-10 cm	0.738	0.405	0.164	-0.056	1.533	1.821	0.069			├	—	
Reganold 2010	20-30 cm	0.750	0.406	0.165	-0.046	1.545	1.847	0.065					

Höhere Bodenkohlenstoffgehalte in Böden unter langjähriger ökologischer Bewirtschaftung (gesicherte Erkenntnis)!

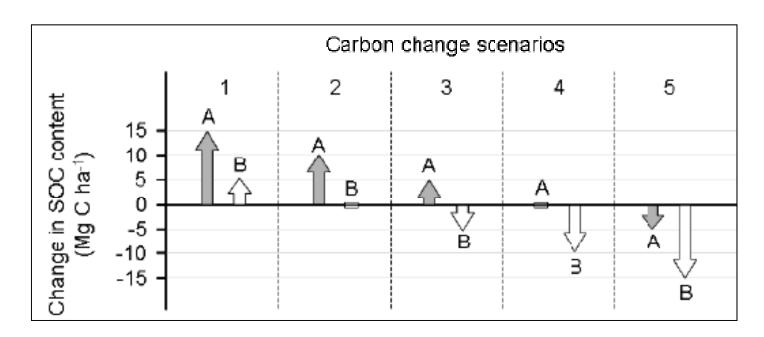
WORS OF ALL SOOD	оту то сот сотграняют уут тааус уаг	0.000	0.000	0.042	0.101	2.102	1.004	0.002	<u> </u>
Blaise 2006	Nagpur	0.207	0.473	0.223	-0.719	1.133	0.438	0.661	
Capriel 1991	Farm Pair 1	0.885	0.856	0.732	-0.792	2.562	1.035	0.301	
Capriel 1991	Farm Pair 2	-0.085	0.817	0.667	-1.686	1.516	-0.105	0.917	
Capriel 1991	Farm Pair 3	2.264	1.046	1.094	0.214	4.314	2.165	0.030	
Capriel 1991	Farm Pair 4	0.615	0.836	0.698	-1.022	2.253	0.736	0.462	
Capriel 1991	Farm Pair 5	1.125	0.879	0.772	-0.598	2.847	1.280	0.201	
Dilly 2001	Arable	0.000	0.271	0.073	-0.531	0.531	0.000	1.000	
Dilly 2001	Grassland	0.000	0.500	0.250	-0.980	0.980	0.000	1.000	
Drinkwater et al 1995	Org-to-Con-Comparison	0.685	0.414	0.172	-0.127	1.496	1.653	0.098	
Gosling & Shepherd 2005	Org-to-Con-Comparison	0.225	0.434	0.189	-0.626	1.076	0.518	0.604	
Grandy 2007	Org-to-Con-Comparison	0.190	0.472	0.223	-0.735	1.116	0.403	0.687	
Granstedt et al 2008	Org-to-Con-Comparison	0.653	0.838	0.702	-0.989	2.296	0.780	0.436	
Moeskops 2010	Cisarua1	4.064	1.011	1.022	2.083	6.045	4.021	0.000	
Moeskops 2010	Cisarua2	-0.901	0.522	0.273	-1.925	0.122	-1.727	0.084	
Nguyen et al 1995	Org-to-Con-to-Dyn-Comparison	3.084	0.662	0.438	1.787	4.381	4.661	0.000	
Pulleman et al 2003	0-10 cm	-0.573	0.623	0.389	-1.795	0.649	-0.919	0.358	
Pulleman et al 2003	10-20 cm	0.105	0.613	0.375	-1.096	1.306	0.171	0.864	
		0.308	0.043	0.002	0.224	0.391	7.187	0.000	+



Kohlenstoffvorräte (= Massen)

(12 Publikationen, 118 Datensätze, 463 Stichproben)

Höhere C-Vorräte (ca. 10.7 t/ha nach 17 J.; enstpricht 630 kg C pro J. u. ha) unter ökologischer Bewirtschaftung (vorläufiges Ergebnis)



Problem: Netto-Speicherleistung von ÖL (mittels Auswertung verfügbarer Datensätze) schwierig zu quantifizieren

Grund: fehlende Ausgangswerte (Kohlenstoffvorräte) bei Umstellungsbeginn

Inhalte

- > Einleitung
- Xohlenstoffspeicherung unter ökologischer Bodenbewirtschaftung
- > Treibhausgasemissionen bei ökologischer Bodenbewirtschaftung
- > Treibhausgasemissionen in der ökologischen Rinderhaltung
- Schlussfolgerungen

N₂O-Emissionen aus Böden

- \Rightarrow GWP_{N2O} = 310
- > Nitrat- und Ammoniumverfügbarkeit
- > Bodenwasser <-> Sauerstoffgehalt
- > Verfügbarkeit von Kohlenstoff
- > Bodentemperatur
- > Frost / Tau

CH₄-Emissionen / Oxidation aus bewirtschafteten Böden

- **>** $GWP_{CH4} = 24$
- Methanemission ist bei der Nassreisproduktion ein erheblicher Faktor (anaerobes Milieu)
- Landwirtschaftsböden in Europa sind weitgehend Senken (Methan-Oxidation in Deutschland: 0,6 Mio t CO₂ eq.)
- > aber diese Senken-Funktion kann durch Bewirtschaftung gestört werden (Ammonium, NH₄⁺ oder Nitrat, NO₃⁻)

Treibhausgasemissionen und Ökolandbau

- ➤ N fixierende Leguminosen, Grünbrachen und Hofdünger sind Kernelemente des ökolog. Pflanzenbaus und stellen nach Einarbeitung/Ausbringung ein Lachgasbildungspotential dar.
- ➤ Leicht verfügbare synthetische N-Dünger können bedarfsgerecht im konv. Pflanzenbau eingesetzt werden.
- > Jedoch werden im ÖL wesentlich weniger Stickstoff in Form von schwerverfügbaren, organischen Dünger eingesetzt.
- Daher sind niedrigere Emissionsraten (vor allem Lachgas) in ökolog. bewirtschafteten Böden zu erwarten?

EXCELLENCE FOR SUSTAINABILITY

Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau

Treibhausgasemissionen aus Böden unter biologischer und konventioneller Bewirtschaftung

A. Gattinger, C. Skinner et al. (in Vorbereitung)

Treibhausgasemissionen unter ökolog. und konv. Bodenbewirtschaftung (CO₂eq/ha)

	Type of study	CON > ORG	CON = ORG	CON < ORG

Nur wenige THG-Messungen in Systemvergleichen; in 7 von 11 Studien geringere GHG-Emissionen unter ökologischer Bewirtschaftung (vorläufiges Ergebnis)

7	Sehy, 2003: Scheyern/D	Field measurement	x*		
8	Lynch, 2008 : CAN	Field measurement	x		
9	Kong, 2007 : USA	Field measurement	x		
10	Kramer, 2006: USA	Field measurement		Х	
11	Robertson, 2000: USA	Field measurement		х	

^{*} Kein Unterschied wenn bezogen auf Ertragseinheit

Herausforderung für klimafreundliche Bodenbewirtschaftung im Ökolandbau

- Organische Düngung zur Pflanzenernährung u. Humusaufbau (= C-Speicherung) steht in Wechselwirkung zu
- ▶ Treibhausgasfreisetzungen (v.a. N₂O) aus Böden

N₂O-Freisetzung nach Gründüngung (Bsp. Integrierter Betrieb Versuchsgut Scheyern)

Tab. 5.14: N₂O-Freisetzungen, senfbürtige N₂O-Freisetzungen, Anteil der senfbürtigen an den gesamten N₂O-Freisetzungen und Emissionsfaktor im ersten Untersuchungsjahr.

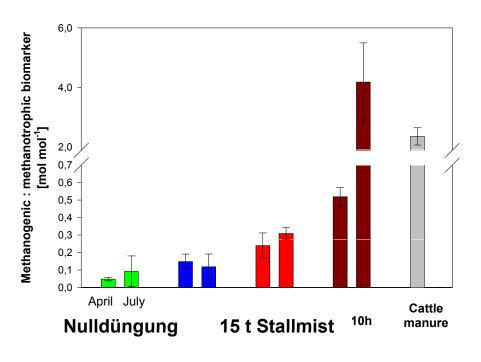
	H+S	L+S
N ₂ O-N [kg N ₂ O-N ha ⁻¹]	5,29b±0,31	4,13°±0,68
N ₂ O-N ₈ [kg N ₂ O-N ha ⁻¹]	0,18°±0,02	0,16°±0,03
N ₂ O-N ₈ N ₂ O-N ⁻¹ [%]	3,39°±0,20	3,81°±0,44
Emissionsfaktor [%]	0,32°±0,03	0,28°±0,03

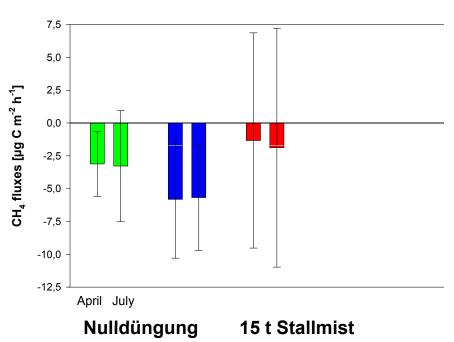
Emissionsfaktor: N₂O-N₈ bezogen auf den gesamten mit dem Gründünger ausgebrachten N (56 kg N ha⁻¹) im Zeitraum eines Jahres

Tab. 5.15: Senfinduzierte N₂O-Freisetzungen und resultierende Emissionsfaktoren aus Hoch- und Niedrigertragsbereichen im ersten Untersuchungsjahr.

	Н	L	
N ₂ O-N _i [kg N ₂ O-N ha ⁻¹]	2,16°±0,88	1,81° ±0,58	
Emissionsfaktor 2 [%]	3,86°±0,16	3,23°±0,10	

Emissionsfaktor 2: Senfinduzierte N₂O-Emissionen (N₂O-N_i: Differenz von N₂O-Emissinen aus +S- und -S-Varianten) bezogen auf den gesamten mit dem Gründünger ausgebrachten N (56 kg N ha⁻¹) im Zeitraum eines Jahres.




Anreicherung von Methanbildnern im Boden und Methanemissionen durch jährliche Stallmistgaben

(Bsp. Statischer Dauerdüngungsversuch Bad Lauchstädt)

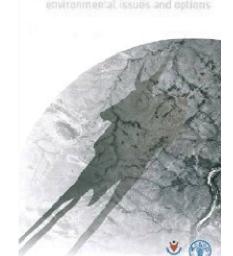
Methanbildner: Methanoxidierer

Methanemissionen

Inhalte

- > Einleitung
- Xohlenstoffspeicherung unter ökologischer Bodenbewirtschaftung
- Treibhausgasemissionen bei ökologischer Bodenbewirtschaftung
- > Treibhausgasemissionen in der ökologischen Rinderhaltung
- Schlussfolgerungen

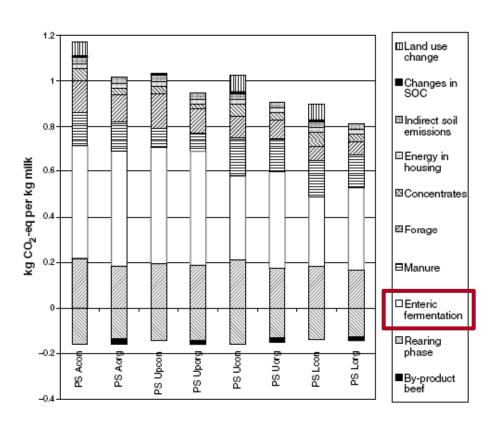
Research Institute of Organic Agriculture Forschungsinstitut für biologischen Landbau Institut de recherche de l'agriculture biologique



Klimarelevanz der Rinderhaltung und Strategien zur Verringerung der THG-Emissionen

Peter Klocke et al.

Klimawirksamkeit der Tierhaltung


- ➤ Nutztiere produzieren 7'500 Mio t CO₂eq.
- 18% der weltweiten Treibhausgase
- ▶ Davon stammt >25% von Wiederkäuern
- grösste THG-Quelle in der Landwirtschaft
- Methanentstehung durch mikrobiellen anaeroben Kohlehydratabbau (v.a. über Essigsäure)
- Faserreiche Rationen (Grundfutter) erhöhen den Methanausstoss

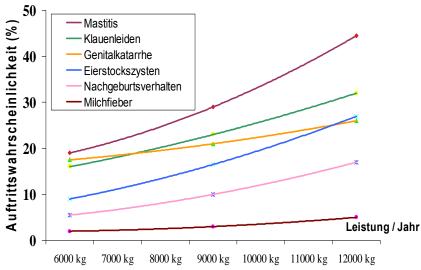
Quellen der Treibhausgasemission in der Milcherzeugung

- > Futterproduktion (eigene)
- Futterproduktion (Import)
- Landnutzungsänderung
- Gebäude und Technik
- > Einstreu & Dung
- Metabolische Emissionen (Pansenfermentation)

GHGE (kgCO2-eq) per kg milk for eight Dairy production systems in Austria (Hörtenhuber et al., 2010)

Intensivierung als Lösung?

Jahresleistung kg Milch	TS- Aufnahme	Futtermi	Methan je kg Milch	
	kg/Tag	Raufutter	Kraftfutter	
4000	12	90	10	0,69
6000	15	80	20	0,53
8000	18	70	30	0,45
10'000	21	60	40	0,40
12'000	24	50	50	0,36


Nach Dämmgen, 2007 und Flachowsky & Brade, 2007

Die Kehrseite der Intensivierung

- Bedarf an Konzentrat-Importen sehr hoch (Land Use Change)
- Intensive Milchrassen erfordern zusätzliche Fleischproduktion
- Pansenbelastung durch hohe Kraftfuttergaben
- «Produktionskrankheiten»
- > Geringere Nutzungsdauer

Nach Metzner et al, 1997 und Fleischer, 2001

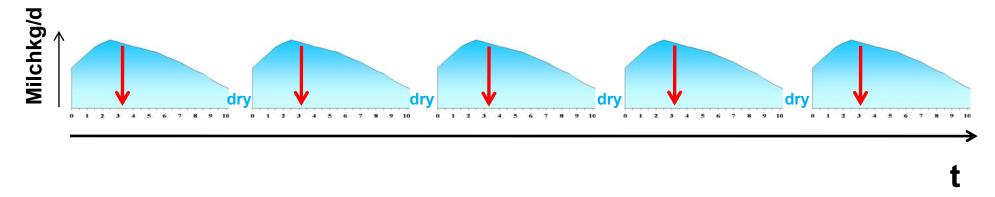
Nachhaltige Strategien

- Leistungsreserven physiologisch mobilisieren
- Leistungseinbussen verringern (Tiergesundheit)
- Stellschrauben beim Menschen (Management)
- > Betreuungsprogramme
 - > Fruchtbarkeit
 - > Eutergesundheit
 - Fütterungsoptimierung
 - Robustheit und Langlebigkeit

1. Fruchtbarkeitsoptimierung

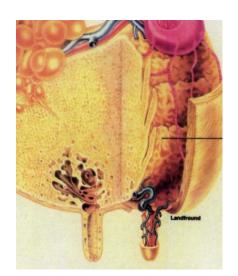
- Frühere Belegung von Färsen
 - > Erstkalbealter CH: 30 mon
 - **>** Optimierung?
- Weniger "unproduktive" Tage pro Kuh
- Aber kürzere Lebenserwartung

Erstkalbealter	⊚ Laktations- nummer
≤ 24 mon	3.15
25-30 mon	3.55
31-36 mon	3.97
> 36 mon	3.74


pro-Q

Fruchtbarkeit (Senkung der Zwischenkalbezeit)

fertile Kühe (Tage bis zur Konzeption <100d)



Milchleistungsdifferenz nach 5 Jahren: +5000 kg

2. Eutergesundheit

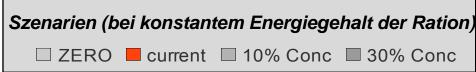
- Xlassische Euterentzündungen
 - Milchrückgang, Milch nicht verkehrsfähig
 - > Rekonvaleszenz
 - Wartezeit durch Medikamente
 - Verlust je Fall bis zu 10%/Jahr

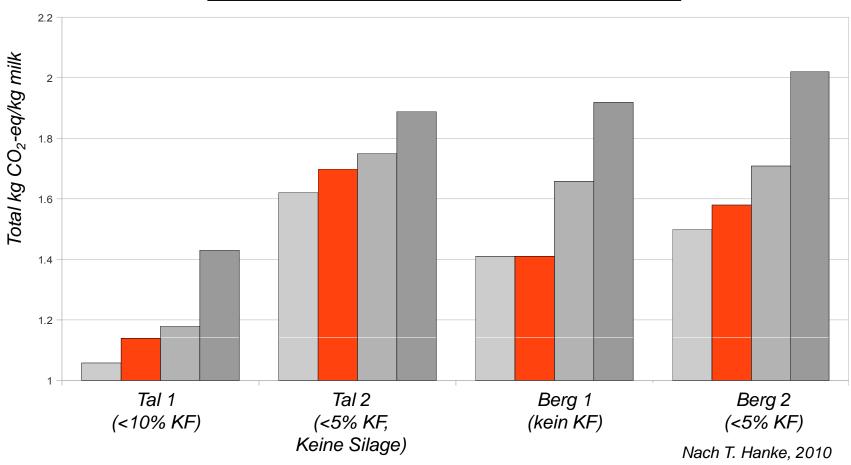
- Latente (subklinische) Euterentzündungen
 - Milchrückgang
 - > Eventuell Wartezeit durch Medikamente
 - > Verlust schwer zu quantifizieren; ca. 10-20% je nach Zellzahl
 - Schlachtung wegen chronischer Mastitis

3. Fütterung: Feed no Food

- > Grundfutterbasierte Fütterungskonzepte
- Minimierung der Kraftfütterung
- > Berücksichtigung des Tierbedarfs
- Lokale Futterproduktion
- > Optimierung des Fütterungsmanagements
- > Evaluation des Grundfutterkuh-Typus
- > Effekte auf Gesundheit und Fruchtbarkeit
- Ökonomische Auswirkungen
- Evaluation der THG-Emission

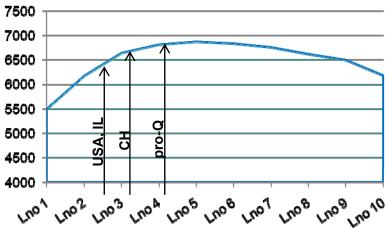
Exemplarische LCA in 4 Modellbetrieben


Betrieb	Tal 1	Tal 2	Berg 1	Berg 2
Anzahl Kühe	32	62	17	12
Milchleistung	6800 kg	6450 kg	5500 kg	5000 kg
Ration	Silage	Keine Silage	Keine Silage	Silage
Kraftfutter	<10%	<10%	Frei	<5%
Stalltyp	Laufstall	Laufstall	Anbindestall / Laufstall	Anbindestall
Futterproduktion	Intensiv Grasland	Intensiv Grasland	Extensiv Grasland	Extensiv Grasland
Alpsömmerung	Nein	Nein	Ja	Ja



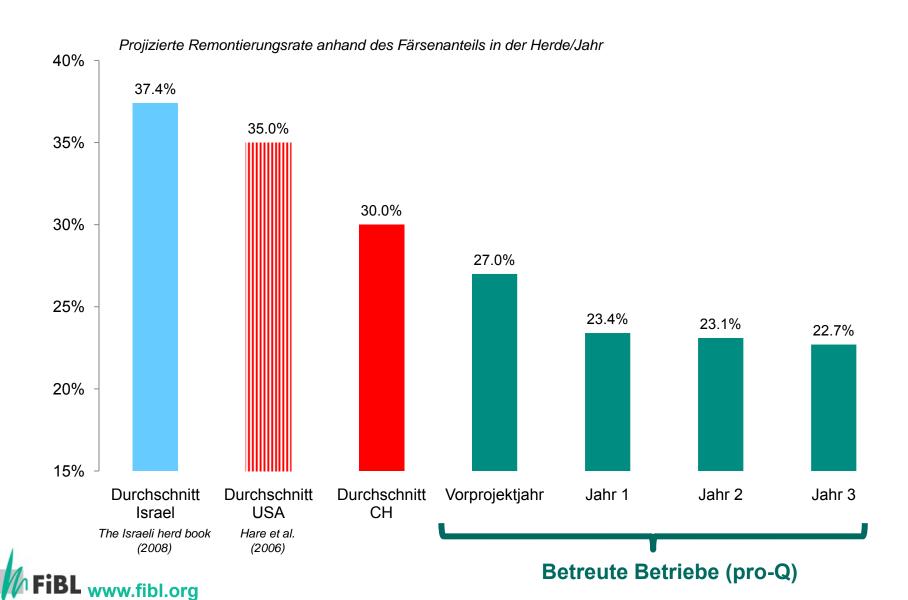
Modellierung verschiedener KF-Szenarien

4. Gesundheit und Langlebigkeit


- Tiergesundheit korreliert mit der Abgangs- oder Remontierungsrate
- > Höhere Remontierung bedeutet mehr Aufzuchttage je Kuh

Milchleistungsoptimum in der 5. Laktation

Einfluss der Remontierungsintensität auf die Zahl «unproduktiver» Tage während der Aufzucht


	Ø CH	Längere Nutzungsdauer	
Mittl. Laktationsnummer	3.3	4.3	5.3
Remontierungsrate	30%	23%	19%
"Unproduktive" Aufzuchttage* * Erstkalbealter 30 mon	277/Kuh	212/Kuh (-23%)	173/Kuh (-38%)

Remontierungsraten im Vergleich



Zweinutzungsrassen

- Dei Milchrassen muss Fleisch zusätzlich aus Mutterkuhhaltung erzeugt werden
- Dieser Aspekt bleibt vielfach unberücksichtigt

	Methan je Einwohner (kg) aus			
Rasse	Milch	Fleisch	Summe	
Holstein	5.0	9.0	14.0	
Fleckvieh	7.7	5.8	10.9	

Nach Rosenberger et al., 2004

Inhalte

- > Einleitung
- Kohlenstoffspeicherung unter ökologischer Bodenbewirtschaftung
- Treibhausgasemissionen bei ökologischer Bodenbewirtschaftung
- > Treibhausgasemissionen in der ökologischen Rinderhaltung
- > Schlussfolgerungen

Fazit

www.fibl.org

- Ökologisch bewirtschaftete Böden zeigen höhere Kohlenstoffgehalte und –vorräte, C-Speicherleistung kann jedoch z.Zt. nicht zuverlässig ermittelt werden
- Ökologisch bewirtschaftete Böden emittieren tendenziell weniger Treibhausgase; mehrjährige Freilandmessungen zum besseren Verständnis der Einflussfaktoren notwendig.
- ➤ Langlebigkeit der Milchviehherden ist der summarische Indikator für eine nachhaltige Milchproduktion mit signifikanten Auswirkungen auf das Klima.
- Tiergesundheits- und Fütterungsmanagement sind dafür die Schlüsselstrategien in der ökologischen Tierhaltung.

